Featured image of post Probability Formulas

Probability Formulas

概率论中的公式

在南信大的时候,我在概率论期末考试前整理了一份公式大全(当时我脑中全部能想到的),最近整理电脑文件时偶然又把它翻出来了。

Chapter 1

$$ \begin{align} &P(A+B)=P(A)+P(B)-P(AB) \\ &P(A-B)=P(A\bar{B})=P(A)-P(AB) \\ &P(AB)=P(A)P(B) \iff \text{A and B are independent} \\ &P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) \\ &P(A|B)=\frac{P(AB)}{P(B)} \\ &P(B|A)=\frac{P(AB)}{P(A)} \\ &P(A)=P(A|B_1)P(B_1)+\cdots+P(A|B_n)P(B_n) \\ &P(B_i|A)=\frac{P(AB_i)}{P(A)} \end{align} $$

Chapter 2

$$ \begin{align} &E(XY)=E(X)E(Y) \iff \text{X and Y independent} \\ &E(X+Y)=E(X)+E(Y) \\ &E(X-Y)=E(X)-E(Y) \\ &E(c\times X)=c \times E(X) \text{, where c is constant}\\ &E(X+c)=E(X)+c \text{, where c is constant} \\ \newline &Var(X+Y)=Var(X)+Var(Y) \iff \text{X and Y independent} \\ &Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y) \\ &Var(X-Y)=Var(X)+Var(Y)-2Cov(X,Y) \\ &Var(c\times X)=c^2\times Var(X) \text{, where c is constant} \\ &Var(X+c)=Var(X) \text{, where c is constant} \\ \newline &Cov(X,Y)=Cov(Y,X)=E[(X-E(X))\times (Y-E(Y))]=E(XY)-E(X)E(Y) \\ &Cov(a\times X, b\times Y)=a\times b\times Cov(X,Y) \\ &Cov(X,X)=Var(X) \\ &Cov(X,c)=0 \text{, where c is constant} \\ &Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) \\ &Cov(X+a,Y+b)=Cov(X,Y) \\ &\Rho_{XY}=\frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} \\ &\Rho_{XY}=1 \iff \exists \text{ a and b } \Rightarrow P(Y=a+bX)=1 \\ \end{align} $$

Chapter 3

使用 Hugo 构建
主题 StackJimmy 设计